Search results for "Dimension theory"

showing 6 items of 6 documents

Local dimensions of measures on infinitely generated self-affine sets

2014

We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.

Discrete mathematicsmatematiikka28A80Applied Mathematicsta111Minkowski–Bouligand dimensionDimension functionMetric Geometry (math.MG)Dynamical Systems (math.DS)Complex dimensionEffective dimensionPacking dimensionMathematics - Metric GeometryHausdorff dimensionFOS: MathematicsdimensionsMathematics - Dynamical SystemsDimension theory (algebra)Inductive dimensionulottuvuudetAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension

2017

A fundamental problem in the dimension theory of self-affine sets is the construction of high- dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction of such high-dimensional measures is to investigate measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as equilibrium states of the singular value function introduced by Falconer. Whilst the existence of these equilibrium states has been well-known for some years their structure has remained elusive, particularly in dimensions higher than two. In this article we give a complete description of the equilibrium states of the singular …

Lyapunov functionPure mathematicsGeneral Mathematics010102 general mathematicsDimension (graph theory)Monotonic functionFunction (mathematics)01 natural sciencessymbols.namesakeHausdorff dimension0103 physical sciencessymbols010307 mathematical physicsUniquenessAffine transformation0101 mathematicsDimension theory (algebra)MathematicsProceedings of the London Mathematical Society
researchProduct

Local structure of s-dimensional sets and measures

1995

Pure mathematicsConvex geometryEuclidean geometryDimension theoryGeometryLocal structureMathematics
researchProduct

Dynamics of the scenery flow and geometry of measures

2015

We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…

Pure mathematicsgeometryMatemáticasGeneral MathematicsDimension (graph theory)CONICAL DENSITIESDynamical Systems (math.DS)Measure (mathematics)Matemática Pura//purl.org/becyt/ford/1 [https]RECITFIABILITYEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsDIMENSIONMathematicsmatematiikkamathematicsta111measures//purl.org/becyt/ford/1.1 [https]Hausdorff spacePOROSITYConical surfacePrimary 28A80 Secondary 37A10 28A75 28A33Flow (mathematics)Mathematics - Classical Analysis and ODEsFRACTAL DISTRIBUTIONSDimension theorygeometriaCIENCIAS NATURALES Y EXACTAS
researchProduct

On inductive dimensions for fuzzy topological spaces

1995

An approach to the dimension theory for fuzzy topological spaces is being developed. The appropriate context for this theory is not the category CFT of Chang fuzzy topological spaces or some of its modifications, but the category Hut introduced in the paper (this category is a slight extension of the category H of Hutton fuzzy topological spaces Hutton (1980). The frames of this category allow us to make exposition simple and uniform, and on the other hand to make it applicable in quite a general setting.

Topological algebraLogicTopological tensor productTopological spaceTopologyTopological vector spaceHomeomorphismAlgebraArtificial IntelligenceMathematics::Category TheoryDimension theoryCategory of topological spacesMathematicsZero-dimensional spaceFuzzy Sets and Systems
researchProduct

Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension

2016

A fundamental problem in the dimension theory of self‐affine sets is the construction of high‐dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction of such high‐dimensional measures is to investigate measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as equilibrium states of the singular value function introduced by Falconer. While the existence of these equilibrium states has been well known for some years their structure has remained elusive, particularly in dimensions higher than two. In this article we give a complete description of the equilibrium states of the singular va…

dimension theory of self-affine setsconstruction of high-dimensional measuresFOS: MathematicsDynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct